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Abstract. We present the explicit state model checker HSF-SPIN which
is based on the model checker SPIN and its Promela modeling lan-
guage. HSF-SPIN incorporates directed search algorithms for check-
ing safety and a large class of LTL-speci�ed liveness properties. We
start o� from the A* algorithm and de�ne heuristics to accelerate the
search into the direction of a speci�ed failure situation. Next we propose
an improved depth-�rst search algorithm that exploits the structure of
Promela never claims. As a result of both improvements, counterexam-
ples will be shorter and the explored part of the state space will be
smaller than with classical approaches, allowing to analyze larger state
spaces. We evaluate the impact of the new heuristics and algorithms on a
set of protocol models, some of which are real-world industrial protocols.

1 Introduction

Model Checking [4] is a formal analysis technique that has been developed to
automatically validate1 functional properties for software or hardware systems.
The properties are usually speci�ed using some sort of a temporal logic or using
automata. There are two primary approaches to model checking. First, Symbolic
Model Checking [22] uses binary decision diagrams to represent the state set. The
second formalization uses an explicit representation of the system's global state
graph. An explicit state model checker evaluates the validity of the temporal
properties over the model by interpreting its global state transition graph as a
Kripke structure.

In this paper we focus on explicit state model checking and its application to
the validation of communication protocols. The protocol model we consider is
that of collections of extended communicating �nite state machines as described,
for instance, in [2] and [12]. Communication between two processes is either
realized via synchronous or asynchronous message passing on communication
channels (queues) or via global variables. Sending or receiving a message is an

1 For the purpose of this paper we use the word \validation" to denote the experimen-
tal approach to establishing the correctness of a piece of software, e.g., by testing
or model checking, while we use the word \veri�cation" to denote the use of formal
theorem proving techniques for the same purpose.



event that causes a state transition. The system's global state space is generated
by the asynchronous cross product of the individual communicating �nite state
machines (CFSMs). For the description of the state machine model we use the
language Promela [17], and for the validation of Promela models we use the
model checker SPIN2 [16].

The use of model checking in system design has the great advantage over the
use of deductive formal veri�cation techniques that once the requirements are
speci�ed and the model has been programmed, model checking validation can
be implemented as a push-button process that either yields a positive result, or
returns an error trail. Two primary strategies for the use of model checking in
the system design process can be observed.

{ Complete validation is used to certify the quality of the product or design
model by establishing its absolute correctness. However, due to the large size
of the search space for realistic systems it is hardly ever possible to explore
the full state space in order to decide about the correctness of the system. In
these cases, it either takes too long to explore all states in order to give an
answer within a useful time span, or the size of the state space is too large
to store it within the bounds of available main memory.

{ The second strategy, which also appears to the more commonly one used,
is to employ the model checker as a debugging aid to �nd residual design
and code faults. In this setting, one uses the model checker as a search tool
for �nding violations of desired properties. Since complete validation is not
intended, it su�ces to use hashing-based partial exploration methods that
allow for covering a much larger portion of the system's state space than if
complete exploration is needed.

When pursuing debugging, there are some more objectives that need to be
addressed. First, it is desirable to make sure that the length of a search until
a property violation is found is short, so that error trails are easy to interpret.
Second, it is desirable to guide the search process to quickly �nd a property
violation so that the number of explored states is small, which means that larger
systems can be debugged this way. To support these objectives we present an
approach to Directed Model Checking in our paper.

Our model-checker HSF-SPIN extends the SPIN framework with various
heuristic search algorithms to support directed model checking. Experimental
results show that in many cases the number of expanded nodes and the length
of the counter-examples are signi�cantly reduced. HSF-SPIN has been applied
to the detection of deadlocks, invariant and assertion violations, and to the val-
idation of LTL properties. In most instances the estimates used in the search
are derived from the properties to be validated, but HSF-SPIN also allows some
designer intervention so that targets for the state space search can be speci�ed
explicitly in the Promela code.

In particular, we propose an improvement of the depth-�rst search algorithm
that exploits the structure of never claims. For a broad subset of the speci�cation
patterns described in [8], such as Response and Absence, the new algorithm per-
forms less transitions during state space search and �nds shorter counterexam-

2 Available from http://netlib.bell-labs.com/netlib/spin.



ples than with the classical nested-depth �rst search. Given the Promela Never
Claim A of the LTL-formula, the necessary static analysis can be performed in
linear time with respect to the number of states in A. Automatically inferring
the heuristic estimate by analyzing the speci�ed formula for the failure turns out
to support the more general setting as well. We improve the heuristic estimate
by taking the structure of the temporal property into account.

Related Work. In earlier work work on the use of directed search in model check-
ing the authors apply best-�rst exploration to protocol validation [21]. They are
interested in typical safety properties of protocols, namely unspeci�ed recep-
tion, absence of deadlock and absence of channel overow. In the heuristics they
therefore use an estimate determined by identifying to send and receive opera-
tions. In the analysis of the X.21 protocol they obtained savings in the number
of expansion steps of about a factor of 30 in comparison with a typical depth
�rst search strategy. We have incorporated this strategy in HSF-SPIN. However,
the approach in [21] is limited to the detection of deadlocks, channel overows
and unspeci�ed reception in protocols with asynchronous communication. The
approach in this paper is more general and handles a larger range of errors and
communication types. We propose the use of various search strategies. Also,
while the labelings used in [21] are merely stochastic measures that will not
yield optimal solutions the heuristics we propose are lower bound estimators
and hence allow us to �nd optimal solutions. The authors of [28] use BDD-
based symbolic search with the Mur� validation tool [28]. The best �rst search
procedure incorporates symbolic information based on the Hamming distance
between two states. This work has been improved in [26], where a BDD-based
version of the A* algorithm [11] for the �cke model checker [1] is presented. The
algorithm outperforms symbolic breadth-�rst search exploration for two scalable
hardware circuits. The heuristic is determined in a static analysis prior to the
search taking the actual circuit layout and the failure formula into account.

In our paper we will use a number of protocols as benchmarks. These include
Lynch's protocol, the alternating bit protocol, Barlett's protocol, an erroneous
solution for mutual exclusion (mutex)3, the optical telegraph protocol [17], an
elevator model4, a deadlock solution to Dijkstra's dining philosopher problem,
and a model of a concurrent program that solves the stable marriage prob-
lem [23]. Real-World examples that we use include the Basic Call processing
protocol [24], a model of a relay circuit [27], the Group Address Registration
Protocol GARP [25], the CORBA GIOP protocol [18], and the telephony model
POTS [19]5.

Precursory Work. The precursor [10] to this paper considers safety property
analysis for simple protocols. In the current paper we extend on this work by re-
�ning the safety heuristics, by providing an approach to validating LTL-speci�ed
safety properties, and by experimenting with a larger set of protocols.

3 Available from http://netlib.bell-labs.com/netlib/spin
4 Available from
http://www.inf.ethz.ch/personal/biere/teaching/mctools/elsim.html

5 The Promela sources and further information about these models can be obtained
from http://www.informatik.uni-freiburg.de/~lafuente/models/models.html



Structure of Paper. In Section 2 we review automata-based model checking.
Section 3 discusses the analysis of safety properties in directed model checking
and describes the use of the A* algorithm for this purpose. In Section 4 we
discuss liveness property analysis. We present approaches to improved search
strategies for validation of LTL properties. In Section 5 we discuss how to devise
informative heuristic estimates in communication protocols. The new protocol
validator HSF-SPIN is presented in Section 6. Experimental results of applying
HSF-SPIN to various protocol examples are discussed in Section 7. We conclude
in Section 8.

2 Automata-Based Model Checking

In this Section we review the automata theoretic framework for explicit state
model checking. Since we model in�nite behaviors the appropriate formalization
for words on the alphabet of transitions sequences are B�uchi-Automata. They
inherit the structure of �nite state automata but with a di�erent acceptance
condition. A run (in�nite path) in a B�uchi-Automaton is accepting if the set of
states that appear in�nitely often in the run has a non-empty intersection with
the set of accepting states. The language L(A) of a B�uchi-Automaton A consists
of all runs that are accepting. The expressive power of B�uchi-Automata includes
LTL.

Formally, LTL speci�cation F (M) according to a Kripke ModelM are de�ned
as follows: All predicates a are in F (M) and if f and g are in F (M), so are
:f; f _ g; f ^ g;X f; F f;G f , and f U g. In LTL, temporal modalities are
expressed through the operators 2 for globally (G) and 3 for eventually (F ).

In automata-based Model Checking we we construct the B�uchi-Automaton
A and the automaton B that represents the system M . A is sometimes obtained
by translating an LTL formula into a B�uchi Automaton. While this translation
is exponential in the size of the formula, typical property speci�cations result
in small LTL formulae so that this complexity is not a practical problem. The
system B satis�es A when L(B) � L(A). This is equivalent to L(B) \ L(A) =

;, where L(A) denotes the complement of L(A). Note that B�uchi-Automata

are closed under complementation. In practice, L(A) can be computed more
e�ciently by deriving a B�uchi-Automaton from the negated formula. Therefore,
in the SPIN validation tool LTL formulae are �rst negated, and then translated
into a Never Claim (automaton) that represent the negated formula. As an
example we consider the commonly used response property which states that
whenever a certain request event p occurs a response event q will eventually
occur. Response properties are speci�ed in LTL as 2(p! 3q) and the negation
is 3(p ^ 2: q): The B�uchi-Automaton and the corresponding Promela Never-
Claim for the negated response property are illustrated in Figure 6.

The emptiness of L(B) \ L(A) is determined using an on-the-y algorithm
based on the synchronous product of A and B: Assume that A is in state s and
B is in state t. B can perform a transition out of t if A has a successor state s0 of
s such that the label of the edge from s to s0 represents a proposition satis�ed in
t. A run of the synchronous product is accepting if it contains a cycle through at
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Fig. 1. B�uchi-Automaton for response property (left) and for its negation (right).

least one accepting state of A. L(B)\L(A) is empty if the synchronous product
does not have an accepting run.

We use the standard distinction of safety and liveness properties. Safety
properties refer to states, whereas liveness properties refer to paths in the state
transition diagram. Safety properties can be validated through a simple depth-
�rst search on the system's state space, while liveness properties require a two-
fold nested depth-�rst search. When property violations are detected, the model
checker will return a witness (counterexample) which consists of a trace of events
or states encountered.

3 Searching for Safety Property Violations

The detection of a safety error consists of �nding a state in which some property
is violated. Typically, the algorithms used for this purpose are depth-�rst and
breadth-�rst searches. Depth-�rst search is memory e�cient, but not very fast
in �nding target states. We describe how heuristic search algorithms can be used
instead in order to accelerate the exploration.

Heuristic search algorithms take additional search information in form of a
evaluation function into account that returns a number purporting to describe
the desirability of expanding a node. When the nodes are ordered so that the
one with the best evaluation is expanded �rst and if the evaluation function
estimates the cost of the cheapest path from the current state to a desired one,
the resulting greedy best-�rst search (BF) often �nds solutions fast. However, it
may su�er from the same defects as depth-�rst search { it is not optimal and
may be stuck in dead-ends or local minima.

Breadth-�rst search (BFS), on the other hand, is complete and optimal
but very ine�cient. Therefore, A* [13] combines both approaches for a new
evaluation function by summing the generating path length g(u) and the esti-
mated cost of the cheapest path h(u) to the goal yielding the estimated cost
f(u) = g(u) + h(u) of the cheapest solution through u. If h(u) is a lower bound
then A* is optimal. Table 1 depicts the implementation of A* to search safety
violations, where g(u) is the length of the traversed path to u and h(u) is the
estimate from u to a failure state.

Similar to Dijkstra's single source shortest path exploration [7], starting with
the initial state, A* extracts states from the priority queue Open until a failure



A*(s)
Open  f(s; h(s))g; Closed fg
while (Open 6= ;)
u Deletemin(Open); Insert(Closed,u)
if (failure(u)) exit Safety Property Violated
for all v in � (u)
f 0(v) f(u) + 1 + h(v)� h(u)
if (Search(Open; v))
if (f 0(v) < f(v))
DecreaseKey(Open; (v; f 0(v))

else if (Search(Closed ; v))
if (f 0(v) < f(v))
Delete(Closed ; v); Insert(Open; (v; f 0(v))

else Insert(Open; (v; f 0(v))

Table 1. The A* Algorithm Searching for Violations of Safety Properties.

state is found. In a uniform-cost graph with integral lower-bound estimate the f -
values are integer and bounded by a constant, such that the states can be kept in
doubly-linked lists stored in buckets according to their priorities [6]. Therefore,
given a node reference Insert and Delete can be executed in constant time while
the operation DeleteMin increases the bucket index for the next node to be
expanded. If the di�erences of the priorities of successive nodes are bounded by
a constant, DeleteMin runs in O(1). Nodes that have already been expanded
might be encountered on a shorter path. Contrary to Dijkstra's algorithm, A*
deals with them by possibly re-inserting nodes from the set of already expanded
nodes into the set of priority queue nodes (re-opening).

Figure 2 depicts the impact of heuristic search in a grid graph with all edge
costs being 1. If h � 0, A* reduces to Dijkstra's algorithm, which in case of
uniform graphs further collapses to BFS. Therefore, starting with s all nodes
shown are added to the (priority) queue until the goal node t is expanded. If we
use h(u) as the Euclidean distance ku � tk2 to state t, then only the nodes in
the hatched region are ever removed from the priority queue.

Weighting scales the inuence of the heuristic estimate such that the com-
bined merit function f of the generating path length g and the heuristic estimate
h is given by f(u) = �g(u) + (1� �)h(u) for all states u and � 2 [0; 1]. In case
� < 0:5, optimality of the search algorithms is a�ected, for � = 0 we exhibit
BF, and for � = 1 we simulate BFS.

4 Searching for Liveness Property Violations

4.1 Nested-Depth-First Search

Liveness properties refer to paths of the state transition graph and the detection
of liveness property violations entails searching for cycles in the state graph.
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Fig. 2. The E�ect of Heuristic Search in a Grid Graph.

This is typically achieved by a nested depth-�rst search (Nested-DFS) that can
be implemented with two stacks as shown in Figure 3 (cf. [4]).

Nested-DFS(s)
hash(s)
for all successors s0 of s do
if s0 not in the hash table then Nested-DFS(s0)

if accept(s) then Detect-Cycle(s)

Detect-Cycle(s)
flag(s)
for all successors s0 of s do
if s0 on Nested-DFS -Stack then exit LTL-Property violated
else if s0 not agged then Detect-Cycle(s0)

Fig. 3. Nested-Depth-First-Search

One feature of this algorithm is that a state, once agged will not be con-
sidered further on. For the correctness of the algorithm the post-order traver-
sal of the search tree is crucial, such that the secondary depth-�rst traversal
only encounters nodes that have already been visited in the main search routine.
Therefore in the application of heuristic methods for the �rst traversal of Nested-
DFS, we are restricted to move ordering techniques: using a heuristic function
for establishing the order in which the successors of a state will be explored.
However, the second search can be improved by directed cycle detection search.
Since we are aiming for those states in the �rst stack we can use heuristics to
perform a directed search for the cycle-closing states. The disadvantage of a
pre-ordered nested search approach (search the acceptance state in the Never-
Claim and, once encountered, search for a cycle) is its quadratic worst-case time
and linear memory overhead, since the second search has to be invoked with
a newly initialized visited list. To address this drawback we developed a single



pass DFS algorithm which will be applicable to a large set of practical property
speci�cations. It will be described in the sequel of this Section.

4.2 Classi�cation of Never Claims

Strongly connected components (SCC) partition a directed graph into groups
such that there is no cycle combining two components. A subset of nodes in
a directed graph is strongly connected if for all nodes u and v there is a path
from u to v and a path from v to u; SCCs are maximal in this sense. SCCs can
be computed in linear time [5]. In the Never-Claim of the example in Figure 6
we �nd two strongly connected components: the �rst is formed by n0 and the
second by na. Furthermore, there is no path from the second SCC to the �rst.
Therefore, accepting cycles in the Never-Claim exist only in the second SCC.
Accepting cycles in the synchronous product automaton are composed of states
in which the Never-Claim is always in state na (second SCC). A cycle is found
if a state is encounterd on the stack. Moreover, if the local state of the never
claim in the found global state belongs to the �rst SCC, the established cycle is
not accepting, and if it belongs to the second SCC it is an accepting one.

In order to generalize the observation suppose that we have pre-computed
all SCCs of a given Never-Claim. Due to the synchronicity of the product of
the model automaton and the Never-Claim a cycle in the synchronous product
is generated by a cycle in exactly one SCC. Moreover, if the cycle is accepting,
so is the corresponding cycle in the SCC of the never claim. Suppose that each
SCC is either composed only by non-accepting states or only by accepting ones.
Then global accepting cycles only contain accepting states, while non-accepting
cycles only contain non-accepting states. Therefore, a single depth-�rst search
can be used to detect accepting cycles: if a state s is found in the stack, then
the established cycle is accepting if and only if s itself is accepting.

The restriction on the SCC structure can be relaxed according to the fol-
lowing classi�cation of the SCCs. We call a SCC accepting, if at least one of
its states is accepting. Otherwise it is non-accepting (N-SCC). We further dis-
tinguish between full acceptance (F-SCC) and partial acceptance (P-SCC). Full
acceptance is given if no cycle in the SCC contains only non-accepting states. If
the Never-Claim contains no partially accepting SCC, then acceptance cycle de-
tection for the global state space can be performed by a single depth-�rst search:
if a state is found in the stack, then it is accepting, if the never state belong to
an accepting SCC. A special case occurs if the never claim has an endstate. If
this state is reached the never claim is said to be violated; a bad sequence is
found. We indicate the presence of endstates with the letter S. Bad sequences
are tackled similarily to safety properties by standard heuristic search.

The classi�cation of patterns in property speci�cations [8] reveals that a
database of 555 LTL properties partitions into Absence (85/555), Universality
(119/555), Existence (27/555), Response (245/555), Precedence(26/555), and
Others (53/555). Using this pattern scheme and the pattern modi�ers Globally,
Before, After, Between, and Until we obtain a partitioning into SSCs according to
Fig 2. We derived these classi�cations from analysing the never claims generated
by SPIN using the spin -f command.



Pattern Globally Before After Between Until
Absence S+N S+N S+N S+N S+N+P
Universality S+N S+N S+N S+N+F S+N+P
Existence F S+P N+F S+N+P S+N+P
Response F S+N+P+F N+F S+N+P+F S+N+P+F
Precedence S+N+P S+N P S+N S+N+P

Table 2. Strongly-Connected Component Classi�cation for LTL-Speci�cation Pat-
terns.

4.3 Improved Nested Depth-First-Search

In this section we present an improvement of the Nested-DFS algorithm called
Improved-Nested-DFS. It �nds acceptance cycles without nested search for all
problems which partition into N- or F-components. The algorithm reduces the
number of transitions required for full validation of liveness properties. Except
for P-SCCS it avoids the post-order traversal. For P-SCCs we guarantee that
the second cycle detection traversal is restricted to the strongly connected com-
ponent of the seed.

The Improved-Nested-DFS algorithm is given in Figure 5. In this Figure,
SCC(s) is the SCC of state s, F-SCC(s) determines if the SCC of state s is
of type F (fully accepting), P-SCC(s) determines if the SCC of the state is of
type P (partially accepting) and neverstate(s) denotes the local state of the
Never Claim in the global state s. The algorithms considers the successors of a
node in depth-�rst manner and marks all visited nodes with the label expanded.
If a successor s0 is already contained in the stack, a cycle C is found. If C
corresponds to a cycle in a F-SCC of the neverstate of s0, it is an accepting
one. Cycles for the P-SCCs parts in the never claim are found as in Nested-DFS,
with the exception that the successors of a node are pruned which neverstates are
outside the component. If a endstate in the Never Claim is reached the algorithm
terminates imediately. Figure 4 depicts the di�erent cases of cycles detected in
the search. The correctness of Improved-DFS follows from the fact that all cycles
in the state-transition graphs correspond to cycles in the Never-Claim. Therefore,
if there is no cycle combining two components in the Never-Claim, so there is
none in the overall search space.

As mentioned above, the strongly connected components can be computed
in time linear to the size of the Never Claim, a number which is very small in
practice. Partitioning the SCCs in non-accepting, partially accepting and fully
accepting can also be achieved in linear time by a variant of Nested-DFS in the
Never Claim. In contrast to the heuristic directed search the improved nested
depth-�rst search algorithm accelerates the search for full validation. This sug-
gests to add the SCCs pre-computed classi�cation and the Improved-Nested-DFS
to the SPIN validation tool.
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4.4 A* and Improved-Nested-DFS

So far we have not considered heuristic search for Improved-Nested-DFS. Once
more, we consider the example of Response properties to be validated. In a �rst
phase, states are explored by A*. The evaluation function to focus the search
can easily be designed to reach the accepting cycles in the SCCs faster, since all
states that we are aiming at are accepting.

This approach generalizes to a hybrid algorithm A* + DFS that alternates
between heuristic search in N-SCCs, single-pass searches in F-SCCs, and Nested-
Search in P-SCCs. If a P- or S-component is encounterd, Improved Nested-DFS is
invoked and searches for cycles. The heuristic estimate respects the combination
of all F-SCCs and P-SCCs, since accepting cycles are present in either of the two
components. The nodes at the horizon of a F- and P-component lead to pruning
of the sub-searches and are inserted back into the Open-List (priority queue)
of A*, which contains all horizon nodes with a neverstate in the corresponding
N-SCCs. Therefore A* + Improved-Nested-DFS continues with directed search,
if cycle detection in the F- and P-component components fails. As in the naive
approach, cycle detection search itself might be accelerated with an evaluation
function heading back to the states where it was started.

Figure 6 visualizes this strategy for our simple example. The Never Claim
corresponds to a response property. It has the following SCCs: SCC0 which is a
N-SCC, and SCCa which is F-SCC. The state space can be seen as divided in
two partitions, each one composed of states where the Never Claim is a state
belonging to one of the SCCs. In a �rst phase, A* is used for directing the search
to states of the partition corresponding to SCCa. Once a goal state is found,
the second phase begins, where the search for accepting cycles is performed by
Improved-Nested-DFS.



Improved-Nested-DFS(s)
hash(s)
for all successors s0 of s do
if s0 in Improved-Nested-DFS -Stack and F-SCC (neverstate(s0)) then exit
LTL-Property violated

if s0 not in the hash table then Nested-DFS(s0)
if accept(s) and P-SCC (neverstate(s)) then Improved-Detect-Cycle(s)

Improved-Detect-Cycle(s)
flag(s)
for all successors s0 of s do
if s0 on Improved�Nested�DFS-Stack then exit LTL-Property violated
else if s0 not agged and SCC(neverstate(s)) = SCC(neverstate(s0)) then
Improved-Detect-Cycle(s0)

Fig. 5. Improved Nested Depth-First Search.

5 Heuristics for Errors in Protocols

In this section we introduce search heuristics to be used in the detection of errors
in models written in Promela. We start o� with precompiling techniques that
help to e�ciently compute di�erent heuristic estimates.

5.1 Precompiling State Distance Tables

We now discuss how to calculate heuristic estimates through a precompilation
step. We assume that a transition system T = (T1; : : : ; Tk) is given with Ti being
the set of transitions within the process Pi. We use S to denote global system
states. In S we have a set P of currently active processes P1; : : : ; Pk. We write
pci to denote the current control state for process Pi. The information we infer
is the Local State Distance Table D that is de�ned for each process type. The
value Di(u; v) �xes the minimal number of transitions necessary to reach the
local state u 2 Si starting from the local state v 2 Si in the �nite state machine
representation for Pi. The matrix Di is determined cubic time [5] with respect
to the size of the number of states in the �nite state representation of Pi.

5.2 The Formula-Based Heuristic

The formula-based heuristic assumes a logical description f of the failure to be
searched. Given f and starting from S, Hf (S) is the estimation of the number
of transitions necessary until a state S0 is reached where f(S0) holds. Similarly,
Hf (S) is the minimum number of transitions that have to be taken until f is
violated. Table 3 depicts the distance measure Hf (S) of the failure formula that

we used. The estimator Hf (S) is de�ned analogously.
We allow formulae to contain other terms such as relational operators and

Boolean functions over queues, since they often appear in failure speci�cations of



... ... ...
...

...

...

...
......

...

n0

true

:q

na

SCC0 SCCa

p ^ :q

Search Tree

Goals for A* Improved-Nested-DFS
2nd Phase

Never Claim

1st Phase
A*

Fig. 6. Visualization of A* and Improved-Nested-DFS for a response property.

safety properties: The function q?[t] is read as message at head of queue q tagged
with t. Another statement is the i@s predicate which denotes that a process with
a process id i of a given proctype is in its local control state s.

In the de�nition of Hg^h we can replace plus (+) with max if we want a
lower bound. In some cases the proposed de�nition is not optimistic, e.g., when
repeated terms appear in g and h. The estimate can be improved based on
a re�ned analysis of the domain. For example suppose that variables are only
decremented or incremented, then Hx=y can be �xed as x� y.

Heuristics for Safety Properties

Invariants. System invariants are state predicates that are required to hold over
every reachable system state S. To obtain a heuristic it is necessary to estimate
the number of system transitions until a state is reached where the invariant
does not hold. Therefore, the formula for the heuristic is derived from invariant.

Assertions. Promela allows to specify logical assertions. Given that an assertion
a labels a transition (u; v), with u; v 2 Si, then we say a is violated if the formula
f = (i@u)^:a is satis�ed. According to f the estimateHf for assertion violation
can now be derived.

Deadlocks. S is a deadlock state if there is no transition starting from S and at
least one of the processes of the system is not in a valid endstate, i.e., no process
has a statement that is executable. In Promela, there are statements that are
always executable: assignments, else statements, run statements (used to start
processes), etc. For other statements such as send or receive operations or



f Hf(S)
true 0
false 1
a if a then 0 else 1
:g Hg(S)
g _ h minfHg(S); Hh(S)g
g ^ h Hg(S) +Hh(S)
full(q) capacity(q)� length(q)
empty(q) length(q)
q?[t] minimal pre�x of q without t (+1 if q

contains no message tagged with t)
x
 y if x
 y then 0, else 1
i@s Di(pci; s)

Table 3. The formula-based heuristic: a denotes a Boolean variable and g and h are
logical predicates, t is a transition, q a queue. The symbol 
 represents relational
operators (=; 6=;�;�;�;�) for natural numbers x and y.

statements that involve the evaluation of a guard, executability depends on the
current state of the system. For example, a send operation q!m is only executable
if the queue q is not full. A naive approach to the derivation of an estimator
function is is to count the number of active (or non-blocked) processes in the
current state S. We call this estimator Hap. It turns out that best-�rst search
using this estimator is quite e�ective in practice. For the formula based heuristic
Hf we can devise conditions for executability for a signi�cant portion of Promela
statements:

1. Untagged receive operation (q?x, with x variable) are not executable if the
queue is empty. The corresponding formula is : empty(q).

2. Tagged receive operations (q?t, with t tag) are not executable if the head
of the queue is a message tagged with a di�erent tag than t yielding the
formula : q?[t].

3. Send operations (q!m) are not executable if q is full indicated by the predicate
:full(q).

4. Conditions (boolean expressions) are not executable if the value of the con-
dition is false corresponding to the term c.

We now turn to the problem of estimating the number of transitions necessary
to reach a deadlock state. The deadlock in state S0 can be formalized as the
conjunct

deadlock �
^

Pi2P

blocked(i; pci(S
0); S0)

where the predicate blocked(i; pci(S
0); S0) is de�ned as

blocked(i; u; S) � (i@u) ^
^

t=(u;v)2Ti

: executable(t; S):



Unfortunately, we do not know the set of states in which the system deadlocks
such that we cannot compute the formula at exploration time. A possible solution
to this problem is to approximate the deadlock formula. First we determine in
which states a process can block and call such states dangerous. Therefore, we
consider a process Pi to be blocked if blocked(i; u; S) is valid for some u 2 Ci,
with Ci being the set of dangerous states of Pi. We de�ne blocked(i; S) as a
predicate for process Pi to be blocked in system state S,i.e., blocked(i; S) =W

u2Ci
blocked(i; S; u) and approximate the deadlock formula with deadlock' =V

Pi2P
blocked(i; S):

Heuristics for the Violation of Liveness Properties For the validation
of LTL speci�cations we need a heuristic for accelerating the search into the
direction of accepting SCCs (P-SCCs and F-SCCs) in the Never Claim. This
can be achieved by declaring all accepting states as dangerous and by using the
local distance table to derive an estimate. An alternative is to collect all incoming
transition labels for the accepting SCCs and build a formula-based heuristic on
the disjunction of that labeling. For the example of the response property we
devise the heuristic H(p ^ :q) ^ never@na .

During the second phase of the nested depth-�rst search we need cycle-
detection search algorithms. Since we know which accepting state to search for
we can re�ne Hf (S) for the given state S as

f =
^

Pi2P

i@pci(S)

Designer Devised Heuristics The designer of the protocol can support the
search for failures by devising a more accurate heuristic than the automatically
inferred one. In HSF-SPIN, there are several options. First of all, the designer can
alter the recursive tabularized de�nition of the heuristic estimate to improve the
inference mechanism. Another possibility is to concretize deadlock occurences in
the Promela code. Without designer intervention, all reads, sends and conditions
are considered dangerous. Additionally, the designer can explicitly de�ne which
states of the processes are dangerous by including Promela labels with pre�x
danger into the protocol speci�cation.

6 The Model Checker HSF-SPIN

We chose SPIN as a basis for HSF-SPIN. It inherits most of the e�ciency and
functionality of Holzmann's original source of SPIN as well as the sophisticated
search capabilities of the Heuristic Search Framework (HSF) [9]. HSF-SPIN uses
Promela as its modeling language. We re�ned the state description of SPIN to
incorporate solution length information, transition labels and predecessors for
solution extraction. We newly implemented universal hashing, and provided an
interface consisting of a node expansion function, initial and goal speci�cation.
In order to direct the search, we realized di�erent heuristic estimates. HSF-SPIN
also writes trail information to be visualized in the XSPIN interface. As when



working with SPIN, the validation of a model with HSF-SPIN is done in two
phases: �rst the generation of an analyzer of the model, and second the validation
run. The protocol analyzer is generated with the program hsf-spin which is
basically a modi�cation of the SPIN analyzer generator. By executing hsf-spin
-a <model> several c++ �les are generated. These �les are part of the source
of the model checker for the given model. They have to be compiled and linked
with the rest of the implementation, incorporating, for example, data structures,
search algorithms, heuristic estimates, statistics and solution generation. HSF-
SPIN also supports partial search by implementing sequential bit-state hashing
[14]. Especially for the IDA* algorithm, bit-state hashing supports the search
for various beams in the search trees. Although the hash function does not
disambiguate all synonyms and the length of a witness is often minimal [10].

The result is an model checker that can be invoked with di�erent parameters:
kind of error to be detected, property to be validated, algorithm to be applied,
heuristic function to be used, weighing of the heuristic estimator. HSF-SPIN
allows textual simulation to interactively traverse the state space which greatly
facilitates in explaining witnesses that have been found.

7 Experimental Results

All experimental results were produced on a SUN workstation, UltraSPARC-II
CPU with 248 Mhz. If nothing else is stated, the parameters while experimenting
with SPIN (3.3.10) and HSF-SPIN are a depth bound of 10,000 and a memory
limit of 512 MB. Supertrace is not used, but partial order reduction is used in
SPIN. We list our experimental results in terms of expanded states and witness
path length, i.e., the length of the counterexample. SPIN does not give the num-
ber of expanded states. We calculate it as the number of stored states plus one;
in SPIN all stored states except the error state are expanded due to the depth
�rst search traversal. Note that we apply SPIN with partial order reduction,
while HSF-SPIN does not yet include this feature.

7.1 Experiments on Detecting Deadlocks

This section is dedicated to experiments with protocols that contain deadlocks.
Table 4 depicts experimental results with these protocols. For parameterized
protocols, we have used the largest con�guration that a breadth-�rst search
(BFS) can solve. We experimented with two heuristics for deadlock detection:
Hap and Hf + U : Hap is the weak heuristics, counting the number of active
processes; andHf+U is the formula based heuristics, where the deadlock formula
is inferred from the user designated dangerous states. In A*, Hf + U seem to
perform better than Hap. On the other hand, with best-�rst search the results
achieved for both heuristics are similar. Therefore, we give the results with Hap

for BF only.
BFS and A* �nd optimal solutions, while BF �nds optimal or near to optimal

solutions in most cases. To the contrary, the depth-�rst search (DFS) traversal
in HSF-SPIN and in SPIN generally provide solutions far from the optimum.



The most signi�cant cases are the Dining Philosophers and the Snoopy proto-
col. SPIN �nds counterexamples of length larger than 1,000, while the optimal
solution is about 30 times smaller. In some cases, A* expands almost as many
nodes as BFS, which indicates a less-informed heuristic estimate. This weakness
is compensated in best-�rst searches, in which the number of expanded nodes is
smaller than in other search strategies for most cases.

In [10] we analyzed the scalability of the search strategies. Evidently, BFS
does not scale. A* and DFS also tend to struggle when the protocols are param-
eterized with higher values. However, best-�rst search seems to be very stable: in
most cases it scales linearly with the parameter tuned, o�ering near-to optimal
solutions. Table 5 depicts some experimental results with the deadlock solution
to the dining philosophers problem. These results show that directed search can
�nd errors in protocols, where undirected search techniques are not able to �nd
them. In the presented case SPIN fails to �nd a deadlock for large con�gurations
of the philosophers problem.

HSF-SPIN SPIN
GARP BFS DFS A*,Hap A*,Hf + U Best-First,Hap DFS
Expanded States 834 62 1,145 53 33 56
Generated States 2,799 70 3,417 194 60 64
Witness Length 16 50 16 18 28 58
Philosophers (p = 8)
Expanded States 1,801 1,365 41 69 249 1,365
Generated States 10,336 1,797 97 69 646 1,797
Witness Length 34 1,362 34 34 66 1,362
Snoopy
Expanded States 37,191 5,823 32,341 6,872 152 1,243
Generated States 131,475 7,406 110,156 24,766 299 1,646
Witness Length 40 4,676 40 40 40 1,113
Telegraph (p = 6)
Expanded States 75,759 44 38 366 38 44
Generated States 445,434 45 108 1,897 108 45
Witness Length 38 44 38 38 38 44
Marriers (p = 4)
Expanded States 403,311 294,549 333,529 284,856 6,281 36,340
Generated States 1,429,380 1,088,364 1,176,336 996,603 16,595 47,221
Witness Length 62 112 62 62 112 112
GIOP (u = 1; s = 2)
Expanded States 49,679 247 38,834 27,753 315 338
Generated States 168,833 357 126,789 89,491 504 377
Witness Length 61 136 61 61 83 136
Basic Call (p = 2)
Expanded States 80,137 115 4,170 36 57 117
Generated States 199,117 136 8,785 60 89 140
Witness Length 30 96 30 30 42 96

Table 4. Detection of Deadlocks in Various Protocols.



HSF-SPIN SPIN
p BFS DFS A*,Hap A*,Hf + U Best-First,Hap DFS
2 Expanded States 10 12 10 10 10 12
Generated States 12 14 12 12 12 14
Witness Length 10 10 10 10 10 10

3 Expanded States 18 19 16 14 32 19
Generated States 30 22 22 19 52 22
Witness Length 14 18 14 14 14 18

4 Expanded States 33 57 21 21 69 57
Generated States 77 75 33 27 155 75
Witness Length 18 54 18 18 26 54

8 Expanded States 1,801 1,365 41 69 249 1,365
Generated States 10,336 1,797 97 69 646 1,797
Witness Length 34 1,362 34 34 66 1,362

12 Expanded States - 278,097 61 50 539 278,097
Generated States - 46,435 193 127 1,468 46,435
Witness Length - 9,998 50 50 98 9,998

16 Expanded States - - 81 66 941 -
Generated States - - 321 201 2,626 -
Witness Length - - 66 66 130 -

Table 5. Number of expanded states and solution lengths achieved by A* in the dining
philosophers protocol (p=number of philosophers).

7.2 Experiments on Detecting Violation of System Invariants

This Section is dedicated to experiments of models with system invariants. In
the following table we summarize the models and the invariant that they violate.
Note that we simpli�ed the denotation of invariant for better understanding.

Model Invariant
Elevator 2(:opened _ stopped)
POTS :3(P1@s1 ^ P2@s2 ^ P3@s3 ^ P4@s4)

The search for the violation is performed with H:i as heuristic estimate,
where i is the system invariant. Table 6 depicts the results of experiments with
two models: an Elevator model, and the model of a Public Old Telephon System
(POTS). The latter is not scalable, and the former has been con�gurated with
3 oors. For the Elevator model, the meaning of the invariant is self explaining.
For the POTS model, the invariant describes the fact that not all processes are
in a conversation state. As explained in [19], we use this invariant to test whether
a given POTS model is capable of establishing a phone conversation at all.

As the Elevator model violates a very simple invariant, the results show that
A* performs like breadth-�rst search; an optimal solution is found, but the num-
ber of expanded nodes are almost the same. SPIN and our depth-�rst search al-
gorithm (DFS) yield about same results. The number of expanded nodes is small
compared to breadth-�rst search and best-�rst search expands more nodes than



HSF-SPIN SPIN
Elevator BFS DFS A* Best-First DFS
Expanded States 228,479 310 227,868 16,955 305
Generated States 1,046,983 388 1,045,061 53,871 363
Witness Length 205 521 205 493 521
POTS
Expanded States 31,792 1,465,103 228 65 2,012,345
Generated States 55,402 4,460,586 471 129 2,962,232
Witness Length 67 1,203 67 67 872

Table 6. Detection of Invariant Violations

DFS for a better solution quality. However, best-�rst search does not approxi-
mate the solution quality. The cause of these unexpected bad performances of
the heuristic search algorithms is the restricted range of the heuristic estimate:
the integer range [0::2]. The quality of the estimate and the e�ciency of the
heuristic search procedures for system invariants correlates with the amount of
information that can be extracted from the invariant.

The POTS protocol violates a more complicated invariant. The formula f
used for the heuristic estimate Hf is the negation of the invariant. Therfore,
the function f is a conjunction of four statements about the local state of four
di�erent processes. The heuristic estimate exploits the information of the tran-
sition graph corresponding to each process. While SPIN has serious problems
to �nd the violation of the invariant, A*'s performance is superior. It �nds an
optimal solution with a relatively small number of expanded nodes. Best-First
search achieves even better results, since it still �nds optimal solutions expand-
ing less nodes. Additionally we suspect that the discrepancies between SPIN's
and HSF-SPINs DFS-exploration can be treated back to the di�erences in the
node expansion for atomic regions.

7.3 Experiments on Detecting Assertion Violations

We have a small group of models containing errors such as violation of assertions
summarize as follows.

Model Assertion
Lynch's Protocol i = lasti + 1
Barlett mr = (lmr + 1)%max
Mutex in = 1
Relay (k141 = (s11 ^ :k121 )) ^

(k121 = (dienstv ^ (:s11 _ k121)))^
(k142 = (s12 ^ :k122 )) ^

(k122 = (dienstv ^ (:s12 _ k122))) ^
(dienstv = (k141 _ k142))) <= :(k141 ^ k142)

GARP false

Table 7 depicts experimental results with these protocols. The data shows
that directed search strategies in HSF-SPIN o�er shorter counterexamples for



assertion violations than SPIN. For the GARP Protocol the number of expanded
states is considerably high, since the heuristic according to the assertion false is
very weak. In all other cases, the number of expansions for heuristic search is by
far smaller smaller than the corresponding number of expanded states in SPIN
with the exception of the Relay protocol, where the number of expanded nodes
in A* exceeds the number found in SPIN by at most three times.

HSF-SPIN SPIN
Lynch BFS DFS A* Best-First DFS
Expanded States 79 50 72 63 47
Generated States 96 52 89 79 50
Witness Length 29 46 29 29 46
Barlett
Expanded States 82 348 61 26 262
Generated States 99 383 76 33 289
Witness Length 20 246 20 20 251
Mutex
Expanded States 349 202 150 24 202
Generated States 699 363 300 48 363
Witness Length 15 54 15 15 54
Relay
Expanded States 707 342 665 151 341
Generated States 2,701 719 2,292 1,069 870
Witness Length 12 190 12 120 190
GARP
Expanded States 17,798 1,040 18,968 4,727 150
Generated States 53,001 2,818 56,406 13,107 187
Witness Length 29 54 29 39 55

Table 7. Detection of Assertion Violations in Various Protocols.

7.4 Experiments on Detecting Violation of LTL Properties

In the following table we summarize test cases for the detection of LTL property
violations. Note that the error in the GIOP protocol has been seeded by explicit
source code annotation.

Model LTL formula
Alternating Bit 2(p! ((3q) _ (3q))
Elevator 2(p! 3(q ^ r))
GIOP 2(p! 3(q ^ r))

The LTL properties of the Elevator and GIOP protocols correspond to the
Response (Globally) pattern, the structure of the property in the alternating bit
is similar such that the A*+DFS algorithm for response properties can be used.

Table 8 shows experimental results on detecting the violation of LTL formu-
lae. We used a variant of the elevator model that includes a controller satisfying



the previously discussed invariant but violates a response property. This protocol
has been con�gurated with 4 oors, while the GIOP protocol is con�gured with
1 server and 3 clients. Comparing the results of the new proposed Improved-
Nested-DFS with those of the classical Nested-DFS, the new algorithm �nds
shorter solutions expanding a few states less. On the other side, the ad-hoc algo-
rithm for response properties (A*+DFS) �nds the shortest solution in all cases.
In the Elevator protocol it expands about 1,000 times more states than the
other algorithms, and in the GIOP example it expands about 1,000 times less
states. In the elevator case we trace the anomaly back to the heuristic estimate
which gave a poor range of values: [0..1]. Heuristic estimates can only improve
a search strategy if they have very speci�c knowledge of the system. A small
ranged heurisitc function cannot achieve this. In the GIOP case the range of
values was somewhat larger ([0..6]), and obviously this improves the e�ective-
ness of the heuristic search. This observation calls for further re�nements of the
heuristic functions.

HSF-SPIN SPIN
Alternating Bit Nested-DFS Improved-Nested-DFS A*+DFS DFS
Expanded States 33 32 11 24
Generated States 37 36 12 32
Witness Length 64 64 22 46
Elevator
Expanded States 309 251 217,810 253
Generated States 381 288 1,276,391 401
Witness Length 405 391 377 405
GIOP
Expanded States 404,799 404,619 113 53,812
Generated States 1,957,563 1,957,390 1,158 107,987
Witness Length 430 158 158 430

Table 8. Detection of Violation of Liveness Properties in Various Protocols.

We also performed full validation experiments with a version of the elevator
protocol that satis�es the response property and observed that Improved-Nested-
DFS executes less transitions (716,715) than classical Nested-DFS (979,336).

7.5 Performance of HSF-SPIN

HSF-SPIN is still a prototype. Therefore, its performance in terms of time and
space cannot compete with SPIN. For example, an exhaustive exploration of the
state space generated by the GIOP protocol parametrized with 2 clients and 2
servers is performed by SPIN (without partial order reduction) in 226 seconds
with a memory consumption of 236 MB, while our tool requires 341 seconds and
about 441 MB of space. Further experiments show that SPIN achieves a speedup
of about 3 in comparison with HSF-SPIN.



8 Conclusion

In this paper we commenced by arguing that there is a need for improving the
e�ciency of model checking. It is desirable to obtain shorter error witnesses in or-
der to more easily understand errors that the model checker reports. A reduction
in the number of visited states during state space search is also desirable since
this renders larger models executable. While in previous work the improvements
were limited to safety properties, we now present an approach to improving the
validation of a large class of non-safety properties. We view this as a step of
developing HSF-SPIN into a full-edged model checker.

The work centers around an algorithm for LTL property checking that is an
improvement to nested depth �rst search. The algorithm exploits the structure of
the Never Claim and heuristic estimates in order to �nd cycles faster. We argued
that based on the translation of LTL formulae to B�uchi Automata implemented
in SPIN we can improve LTL property checking for a large class of speci�cation
patterns used in practice. Next we presented heuristics to be used in search
algorithms for di�erent classes of properties. We then presented HSF-SPIN, and
illustrated its application to a number of protocol examples.

As future work we plan to analyze the proposed improvement of the nested
depth-�rst search algorithm. In particular we want to study if the classi�cation
of the SCCs of the never claim is inherent to the speci�cation pattern or if it
depends on the algorithm used for the translation from the LTL formula. We
also plan to perform further experiments to verify the reduction in the number
of performed transitions by the new algorithm as well as re�nements of the
heuristic estimates. It has been shown that nested-depth �rst search and partial
order reductions can coexist [15]. Therefore, we currently investigate how to
reconcile partial order reduction and directed search.

One of our central research aims is develop an integrated protocol de�nition
and validation system for Promela protocols that integrates HSF-SPIN and vi-
sualization front-ends for protocol design and visualized error traces, such as
VIP [20] and VEGA [3].
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